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V irtually all cellular responses to environmental
perturbations are controlled in part by tightly
regulated protein phosphorylation signaling net-

works. Aberrant activation of kinases or loss of phos-
phatase activity underlies many major human diseases
including cancer, autoimmunity, and diabetes (1–3).
The early discovery of the transforming capability of con-
stitutively active tyrosine kinases has led to extensive re-
search on dysregulated signaling in cancer (4). As a re-
sult, increased expression or activation of kinases has
been found to play a causative role in many cancers, in-
cluding the BCR-ABL fusion protein in chronic myeloid
leukemia (CML), B-Raf in melanoma, the receptor ty-
rosine kinase (RTK) EGFR in lung cancer and glioblas-
toma, and HER2 in breast cancer (5, 6). Because kinase-
activated signaling networks are associated with
increased proliferative, migratory, and invasive pheno-
types, small molecule kinase inhibitors are a major area
of pharmaceutical research and development (7).

The theory of oncogene addiction suggests that tar-
geted inhibition or removal of the transforming “driver”
mutation should block malignant phenotypes and lead
to apoptosis by eliminating proliferation and survival
signals, while having a minimal effect on normal tissues.
Unfortunately, clinical results with targeted kinase in-
hibitors as monotherapies for cancer treatment have
been largely disappointing because of confounding is-
sues including lack of specificity, primary resistance be-
cause of compensating or redundant signals, rapid de-
velopment of acquired resistance, and toxicity (7). To
develop more effective cancer therapeutics it is neces-
sary to address these issues by determining the com-
plete target spectrum of the clinical molecules and to
couple this information to a comprehensive understand-
ing of signaling networks across tissue types and dis-
ease states.
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ABSTRACT The limited clinical success of therapeutics targeting cellular signal-
ing processes is due to multiple factors, including off-target effects and complex
feedback regulation encoded within the signaling network. To understand these ef-
fects, chemical proteomics and chemical genetics tools have been developed to
map the direct targets of kinase inhibitors, determine the network-level response
to inhibitor treatment, and to infer network topology. Here we provide an overview
of chemical phosphoproteomic and chemical genetic methods, including specific
examples where these methods have been applied to yield biological insight re-
garding network structure and the system-wide effects of targeted therapeutics.
The challenges and caveats associated with each method are described, along with
approaches being used to resolve some of these issues. With the broad array of
available techniques the next decade should see a rapid improvement in our un-
derstanding of signaling networks regulation and response to targeted perturba-
tions, leading to more efficacious therapeutic strategies.
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Chemical biology provides a wide array of tools to in-
terrogate interactions between small molecules and bio-
logical systems. In this review, we highlight techniques
in chemical biology that have demonstrated the greatest
utility for understanding phosphorylation signaling net-
works and therapeutic response to kinase inhibitors. We
focus on chemical proteomics and phosphoproteom-
ics, two methods that probe signaling networks at a
system-wide level. With these techniques it is now pos-
sible to identify the spectrum of targets for each small
molecule and measure their respective interaction
strengths and inhibition kinetics. Since therapeutic ef-
fect is a combination of on- and off-target effects, com-
prehensively mapping interactions can identify clinically
important or potentially toxic off-target effects prior to
in vivo testing.

Signaling networks are dynamic, and feedback pro-
cesses and adaptation can lead to unexpected or unde-
sirable effects including therapeutic resistance. There-
fore, mapping downstream signaling processes and
adaptive responses is also important for understanding
the effects of targeted therapeutics. A range of chemical
biology techniques have been developed for systemic
analysis of signaling networks, including multiplexed or
high-throughput assays for activity of key signaling
nodes (8–10) and mass spectrometry-based ap-
proaches that probe signaling networks on a global
scale (11, 12). These approaches are providing new in-
sight into signaling networks, including their function,
topology, and response to chemical perturbations. With
these tools, including the latest technical develop-
ments in chemical phosphoproteomics, systemic ef-
fects of kinase inhibitors can be quantified with site-
specific resolution across the signaling network
(reviewed in ref 13). Global analysis of phosphorylation
following treatment with targeted inhibitors is rapidly in-
creasing our understanding of how cells adapt to loss
of oncogenic signals by altering signaling. Activated
pathways may be critical in evolution of a resistant state
and may serve as combinatorial therapeutic targets. Of-
ten these experimental strategies are combined with in-
creasingly sophisticated computational analysis to gen-
erate or test specific hypotheses based on system-wide
measurements (14).

Despite rapid advancements in methodology and in-
strumentation, we identify three primary experimental
challenges in using chemical biology to understand
phosphorylation signaling networks:

1. Lack of specificity of most kinase and phos-
phatase inhibitors limits their usefulness in both re-
search and clinical settings. Off-target effects must be
considered when designing and interpreting experi-
ments meant to provide mechanistic insights.

2. Even specific inhibition of a signaling node leads
to complex downstream effects through largely unchar-
acterized interactions and feedback regulation. Predict-
ing how cells will respond to targeted perturbations re-
quires high quality, quantitative, temporal data across
cell types and conditions. Progress in microarray and
mass spectrometry technologies have enabled systems-
level quantitative analysis, but all techniques still re-
quire extensive validation to ensure high quality data.

3. Although many important signaling pathways
have been mapped, most network topology is still un-
characterized. Studies to identify direct interactions
among kinases, substrates, and regulators are still rou-
tinely identifying novel interactions. Recent develop-
ments in chemical genetics have enabled unbiased and
sensitive identification of kinase substrates, but high-
throughput studies remain stalled by limitations of
protein engineering and analytical technology.

Biochemical Characterization of Kinase Inhibitors.
Most kinase inhibitors bind to the ATP-binding pocket
of the kinase in an active conformation (Type I inhibi-
tors). However, since the structures of ATP-binding
pockets are strongly conserved across most kinases,
ATP-competitive inhibitors tend to have a broad range
of off-target interactions. Inhibitors that stabilize inac-
tive kinase conformations (Type II inhibitors) and allo-
steric inhibitors (Type III inhibitors) provide opportuni-
ties for greater specificity but are difficult to develop and
do not completely eliminate off-target binding (7). Off-
target interactions can contribute to clinical toxicity, and
therefore a range of methods have been developed to
comprehensively profile kinase–inhibitor interactions.
Frequently used approaches include immobilizing small
molecules to capture kinase targets (15), parallel ki-
nase activity assays (16), and interrogation of systemic
readouts of biological activity such as transcript profiling
(17). These techniques have been recently reviewed by
Rix et al. (18) and will not be elaborated here.

Limits of Biochemical Characterization. Biochemical
analysis of an inhibitor typically determines only the
binding constant (KD) or the potency of inhibition (IC50)
for each kinase. These values are important for under-
standing inhibitor specificity but they do not describe
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the biological consequences of on- or off-target inhibi-
tion. Feedback processes in many signaling networks
allow the network to adjust rapidly to maintain down-
stream signaling levels following inhibition of a central
node. In addition, our incomplete knowledge of signal-
ing network structure means that even highly specific in-
hibitors can have unpredictable effects on signaling
and resulting phenotypes (Figure 1). For example, B-Raf
inhibition in the presence of activated NRAS has re-
cently been shown to increase signaling by ERK1/2
through compensatory activation of Raf-1 (19).

A priori prediction of feedback-mediated effects can
be especially challenging because of cell-type and
context-specific interactions: emerging data indicates
that signaling networks are differentially “wired” in dif-
ferent cell types and disease contexts (20) and can be
“rewired” in response to exogenous stimuli (21). A
quantitative and mechanistic understanding of signal-
ing processes in a variety of contexts will be critical for
predicting and interpreting complex signaling responses
and their resulting phenotypes. However, despite exten-
sive research, detailed mechanisms underlying the con-
nection between signaling perturbations and simple
phenotypes such as migration and survival are still in-
completely understood. The role of signaling processes
in more complicated phenotypes such as sensitivity or
resistance of a tumor to targeted therapeutics depends
not only on the immediate signaling network but also on
interactions with the microenvironment and the larger
organ system. Our understanding of these higher-order
processes is rudimentary at best; this knowledge gap di-
rectly limits our ability to predict response to therapeu-
tic treatments in complex, physiologically relevant
settings.

System-Level Approaches to Study of Kinase
Signaling. To begin to unravel complex signaling pro-
cesses, systems-wide approaches to interrogate signal-
ing networks have been developed. When the key nodes
in a signaling network are known, antibodies targeted
against particular post-translational modifications
(PTMs) can be used to measure the state of the sys-
tem, frequently in high-throughput or multiplexed for-
mats (22–24). Although these assays can be very infor-
mative, many antibodies are not specific for a single
PTM and may therefore yield false-positive results, as
demonstrated by Sevecka et al. (25). Additionally, the
range of possible downstream effects is often unknown,
and targeted assays are often unavailable. Proteomic

strategies using affinity enrichment for PTMs along with
quantitative mass spectrometry allow signaling net-
works to be interrogated without prior knowledge of
which nodes or pathways may be perturbed. For the
most part, mass spectrometric analysis of signaling net-
works has focused on phosphorylation-mediated signal-
ing (phosphoproteomics) due to the importance of
these networks in regulating biology and to the ready
availability of several affinity enrichment methods (26–
28). Strategies to isolate other PTMs such as methyla-
tion (29), lysine acetylation (30, 31), and ubiquitination
(32, 33), along with S-nitrosylation (34, 35), are less de-
veloped but beginning to enter common use.

Chemical Phosphoproteomics: Systems-Level
Analysis of Kinase Inhibitors. Global phosphoproteomic
analysis uses affinity enrichment of phosphorylated
peptides to provide a broad and unbiased view of the
signaling network, including phosphorylation of serine,
threonine, and tyrosine residues (26) (36–38). In these
experiments cell lysates are digested to peptides and
phosphorylated peptides are enriched using ap-
proaches such as immobilized metal affinity chromatog-
raphy or metal oxide affinity
chromatography. Mass spec-
trometric analysis of peptide
fragmentation patterns allow
specific phosphorylated pep-
tides to be identified by statis-
tical comparison to peptides
from in silico digest of the pro-
teome (39). These experi-
ments routinely identify hun-
dreds to thousands of
phosphorylated peptides.

Unfortunately, this breadth
tends to come at the cost of
limited depth, as abundant
proteins are more likely to be
detected by global analysis,
while many important signal-
ing proteins are present only at
low levels. Even so, this ap-
proach has been used to inter-
rogate the effects of kinase
inhibitors (Figure 2), as dem-
onstrated by Pan et al. (40). In
this study, global phosphopro-
teomics was performed to ana-
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lyze the effects of U0126, a MEK1/2 inhibitor, and
SB202190, a p38� inhibitor, on EGFR signaling in HeLa
cells and to quantify the effects of dasatinib, an inhibitor
of ABL and SRC family kinases, on the BCR-ABL signal-
ing in a leukemia cell line. Of the several thousand sites
identified in this study, approximately 500 increased af-
ter EGF treatment and 200–300 decreased with inhibi-
tor co-treatment. Amino acid motifs around dynamic
phosphorylation sites were queried to determine the
percentage of affected sites matching the motif of the
targeted kinase, but this data has to be carefully consid-
ered given the approximately 1% false positive identifi-
cation rate (FPR) of the methods used in this manuscript.
With this FPR, 5000 peptide identifications corresponds
to approximately 50 false positive identifications. Be-
cause incorrectly identified peptides will tend to be
weaker signals, they are also likely to be among the
most variable in the data set and could constitute a sig-
nificant percentage of peptides that seem to be af-
fected by the inhibitors. When drawing biological con-
clusions, it is important to be aware of possible
identification errors, and we recommend that peptide

assignments important for
biological conclusions be
verified by manual inspec-
tion and comparison to syn-
thetic peptides.

Chemical Phospho-
proteomics: Targeted
Approaches. Relative to glo-
bal analysis, targeted phos-
phoproteomics techniques
enable more in-depth char-
acterization of a subset of
the phosphoproteome, al-
lowing for quantification of
effects of small molecule in-
hibitors on low-level phos-
phorylation sites. This ap-
proach has been critical for
the analysis of tyrosine ki-
nase inhibitors, as tyrosine
phosphorylation represents
a small part (�1%) of total
phosphorylation in mamma-
lian cells (41). The most
common method for tar-

geted phosphoproteomics uses pan-specific anti-
bodies targeting a subset of the phosphoproteome,
such as proteins or peptides containing phosphoty-
rosine or phosphorylation in the context of specific
amino acid motifs (42, 43). Alternate methods for tar-
geted phosphoproteomics approaches include those
based on affinity for small molecules, such as ATP or
kinase inhibitors (44, 45).

In a recent example of targeted chemical phospho-
proteomics, Moritz et al. developed antibodies recogniz-
ing phosphorylation in the context of the RXRXXS/T mo-
tif common to basophilic kinases including Akt, RSK,
and p70 S6K (46). They used peptide immunoprecipita-
tion followed by mass spectrometry analysis optimized
for basic peptides to identify hundreds of basophilic
phosphorylation sites affected by treatment with ge-
fitinib, SU11274, and imatinib (inhibitors of activated
EGFR, c-Met, and PDGFR, respectively), as well as
U0126, wortmannin, and rapamycin (inhibitors of
MEK1/2, PI3K, and mTOR). This analysis identified phos-
phorylation sites downstream of activated RTKs in sev-
eral cancer cell lines and signaling nodes where tyrosine
and basophilic phosphorylation are likely to interact. Im-

Figure 1. Schematic diagram showing core elements of the ERK1/2 and Akt signaling pathways downstream of
EGF receptor and insulin receptor. Selected feed-forward and feedback processes are emphasized to highlight
the connected nature of the signaling network. Kinase inhibitors referenced in the text are shown along with
their primary targets.
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portantly, the authors note that their basophilic phos-
phorylation sites are not necessarily direct substrates of
any particular basophilic kinase, even when a site re-
sponds to a particular targeted inhibitor. Demonstration
of a direct kinase substrate relationship requires both a
direct physical interaction, often shown biochemically,
as well as an in vivo functional relationship.

Phospho-motif antibodies recognizing basophilic
phosphorylation sites were also used in a separate
study to investigate the effects of inhibitors of Akt,
MEK1/2, and PDK1, along with enrichment of proline-
directed phosphorylation (PXS/TP) and binding sites for
PDK1 (47). Following mass spectrometry-based identifi-
cation of phosphorylation sites, phosphospecific anti-
bodies were used to show that phosphorylation of
Thr246 on PRAS40 is correlated with activated Akt in a
cohort of breast and lung cancer cell lines and that
phosphorylated PRAS40 is a more sensitive marker
than phosphorylated AKT to identify upregulated PI3K
signaling in tumors by immunohistochemistry.

High quality quantitative data is critical for phospho-
proteomics, as important signaling processes can be
mediated by relatively small changes, often on the or-
der of tens of percent. To achieve accurate quantifica-
tion, labeling with stable isotopes, e.g., stable isotope
labeling with amino acids in cell culture (SILAC) (48) or
isobaric tags for relative and absolute quantitation
(iTRAQ) (49), can be incorporated into phosphoproteom-
ics experiments, enabling acquisition of quantitative
data reflecting the effect of small molecules on the sig-
naling network. These strategies allow conditions to be

multiplexed (generally 2- or 3-plex for SILAC and up to
8-plex for iTRAQ) and compared directly in a single ex-
periment, effectively eliminating much of the variability
from preparation, chromatography, and mass spectrom-
etry. The degree of accuracy afforded by stable isotope
labeling is important for characterizing the system-level
effects of small molecules and necessary if chemical
proteomics data is going to be incorporated into math-
ematical models or analyzed by most types of statistical
or machine-learning methods.

In a recent application of quantitative, targeted
chemical phosphoproteomics, Li et al. identified sev-
eral novel direct kinase targets of dasatinib through a
combination of chemical proteomics and quantitative
targeted phosphoproteomics (45). In the first part of this
study, direct targets of dasatinib were identified through
affinity enrichment of proteins bound to dasatinib-
coated beads. In the second phase of the study, tar-
geted analysis of tyrosine phosphorylation was first
used to identify tyrosine phosphorylated kinases in
multiple cell lines and then to quantify the effect of
dasatinib treatment on the kinase phosphorylation
sites. Overall, dasatinib treatment led to decreased
phosphorylation on 18 tyrosine kinases, including di-
rect targets and multiple downstream kinases, provid-
ing some information regarding the complexity and con-
nectivity of the signaling network. This combined
approach was able to identify novel off-target direct tar-
gets of a well-studied inhibitor, as shown by the finding
that EGFR is directly inhibited by dasatinib, a result that

Figure 2. A shared workflow for quantitative phosphoproteomics can be applied to characterizing novel kinase
inhibitors and to probing network biology by targeted inhibition with well-known inhibitors. In each case analy-
sis and interpretation of the data must be considered in the context of confounding network or off-target effects.
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was strengthened through multiple confirmatory biologi-
cal experiments.

Quantitative analysis of the tyrosine phosphopro-
teome has been used to characterize tyrosine signaling
downstream of EGFR and in the context of oncogenic
EGFR in model systems for glioblastoma and non-small
cell lung cancer (43, 50, 51). These analyses revealed
unexpected crosstalk between EGFR and c-Met, two on-
cogenic RTKs, and found that combined inhibition of
c-Met and EGFR could generate a synergistic response
compared to EGFR inhibition alone. In addition to direct
signaling mechanisms, phosphorylation profiling has
been used to understand genetic mechanisms leading
to acquired resistance to targeted inhibitors. For ex-
ample, Engelman et al. also used phosphoprotein
microarrays to find that acquired resistance to targeted
inhibition in EGFR-driven lung cancer can occur by ampli-
fication of c-Met leading to sustained activation of sur-
vival signaling (52).

Quantitative tyrosine phosphoproteomics has also
been applied to understand the effects of tyrosine ki-
nase inhibitors by mapping changes in signaling follow-
ing treatment with imatinib (Gleevec) (53), genistein
(54) or the Src-family inhibitor PP2 (55). Interestingly,
treatment with tyrosine kinase inhibitors often causes a
small fraction of tyrosine phosphorylation sites to in-
crease, probably as a result of activation of another
kinase or inactivation of a phosphatase. More detailed
understanding of the signaling network topology should
provide insight into the mechanisms underlying these
nonintuitive changes in phosphorylation.

Computational Analysis of Phosphoproteomic Data.
Although phosphoproteomic analysis can reveal unex-
pected downstream effects, it provides very little infor-
mation about the underlying interactions and molecular
mechanisms. Also, because most phosphorylation
sites lack known function, it is often unclear whether
changes in phosphorylation will have biological conse-
quences or whether these sites may simply be “by-
stander” effects of altered kinase activity (56). To
address these issues, a variety of computational ap-
proaches have been developed to link systems-level
phosphorylation data to other biological processes and
cellular responses.

To infer functional consequences by linking phospho-
proteomics data with biological responses, it is neces-
sary to have quantitative phosphorylation and pheno-
typic data gathered across a shared set of biological

conditions, although not at the same time-points since
signaling should precede phenotypic responses. Al-
though most quantitative data is relative (i.e., fold
change between conditions) there is also interest in in-
corporating information about absolute phosphorylation
stoichiometry (57). In the absence of prior knowledge
about a phosphorylated protein, phosphorylation data
can be linked to phenotypic outcomes by looking for cor-
related signals, typically through multivariate regres-
sion such as partial least squares regression (PLSR) or
nonlinear machine-learning approaches like self-
organizing maps or decision trees (reviewed in ref 58,
some examples in refs 21 and 59). This type of data-
driven modeling can suggest unexpected hypotheses
but it does not incorporate existing knowledge and pro-
vides minimal mechanistic insight.

Other computational approaches use systems-level
data to build or elaborate on network models represent-
ing functional or biochemical interactions among signal-
ing molecules. These methods generally start from exist-
ing information, such as databases of protein–protein
interactions, kinase–substrate relationships, or rate
constants of biochemical processes, and test the predic-
tive ability of each model (58). In some cases, physical
models of some well-studied signaling networks have
been represented by coupled differential equations and
used to predict phenotypic sensitivity to inhibition of
selected nodes in the network. For instance, Merrimack
Pharmaceuticals used sensitivity analysis with a physi-
cal model of ErbB receptor-family signaling to identify
ErbB3 (HER3) as a key node in regulating system-level
behavior (60, 61). An antibody antagonist for HER3 is
now entering phase II clinical trials. These types of
models generally work with only a small part of the
data that falls within our limited knowledge of signal-
ing processes.

Chemical Genetics for Engineered Specificity. Al-
though it is possible to link phosphorylation sites to
phenotype, it is still challenging to relate altered phos-
phorylation to a particular kinase or phosphatase, due
to limited knowledge of signaling network connectivity
(62). To address this challenge and define direct kinase–
substrate relationships, chemical genetic techniques
have been developed in which the kinase or substrate
has been mutated to introduce interactions with small
molecules that do not interact with the complex back-
ground of biochemical activity in the cell (Figure 3). For in-
stance, Blair et al. engineered EGFR and c-Src to be irre-
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versibly inhibited by 6-acrylamido-4-anilinoquinazoline
and used a fluorescent form of the inhibitor to study the
fraction of active signaling molecules required to ini-
tiate downstream signals (63), while Maly et al. replaced
a particular serine/threonine phosphorylation site with
a cysteine and then treated with an ATP analogue to co-
valently cross-link the substrate to its kinase (64). Per-
haps the most powerful of these chemical genetics ap-
proaches was developed by the Shokat lab in 1997
(65). In this approach, structural analysis was used to
design a mutation in the ATP-binding site of v-Src,
thereby altering the structure to accommodate a bio-
orthogonal ATP analogue (in this case N6-benzyl ad-
enosine triphosphosate). To differentiate substrates of
the mutated, analogue sensitive (AS) kinase from sub-
strates of other kinases, a radiolabeled phosphate was
included in the terminal position of the ATP analogue,
thereby resulting in the transfer of radiolabeled phos-
phate to the kinase substrate. In addition to radio-
labeling of direct substrates, the altered ATP-binding
pocket of the AS-kinase rendered it sensitive to inhibi-
tion by a variety of bio-orthogonal ATP analogue inhibi-
tors that have minimal affinity for endogenous ATP-
binding pockets (66, 67).

The AS-kinase approach has several advantages
over other chemical methods: it allows direct kinase
substrates to be definitively tagged, it bypasses the
need to design and validate a specific inhibitor for ev-
ery kinase, and it ensures a limited and consistent set
of off-target effects since the same inhibitor can be used

for different AS-kinases. Engineering inhibitor sensitiv-
ity into specific kinases can be particularly useful to dif-
ferentiate roles of related kinases, such as the various
Src-family kinases. AS alleles have been used to parse
out the transcriptional and apoptotic roles of JNK1 and
JNK2 following stimulation by tumor necrosis factor �

and in p53-induced senescence (68, 69). The AS-kinase
approach was also used to identify a role for polo-like
kinase 1 (PLK1) in positioning RhoA during cytokinesis,
by replacing endogenous PLK1 with an analogue sensi-
tive allele for targeted inhibition (70).

Discovering Network Topology by Chemical
Genetics. In addition to studying the phenotypic effects
of targeted inhibition of a selected kinase, the AS-kinase
approach has been also been used to identify sub-
strates for multiple different kinases, including v-Src
(71), JNK2 (72), PKA (73), CDK1 (74), and ERK2 (75). All
of these studies were relatively low-throughput, as they
relied on radiolabeled ATP-analogues to label sub-
strates, which were then identified through MS analy-
sis of bands cut from 1D or 2D electrophoresis gels.
Without the ability to selectively enrich radiolabeled
substrates in a complex background of phospho-
proteins and non-phosphoproteins, analysis of many of
the bands resulted in identification of multiple different
proteins, from which the true substrate had to be deter-
mined. Although over 40 AS-kinases have been devel-
oped, successful substrate identification using these
kinases was limited by the inability to selectively enrich
substrates and by challenges associated with designing

Figure 3. Chemical genetics approaches for kinase substrate identification. (a) Analogue sensitive kinases are used
with labeled ATP analogues to selectively tag direct substrates with 32P phosphate or thiophosphate. (b) Structures
of ATP and a �-thio labeled example of a bulky ATP analogue used in chemical genetics (N6-(2-phenylethyl)-ATP�S).
(c) Antibodies recognizing alkylated thiophosphate or solid-phase capture of thiophosphorylated peptides can be
used to identify tagged proteins.

REVIEW

www.acschemicalbiology.org VOL.6 NO.1 • 75–85 • 2011 81



and validating AS-kinases that retain enough activity to
function in their biological context (76).

Over the past two years the substrate enrichment
problem has been partially solved by replacing the 32P
radiolabel on the ATP analogue with thiophosphate,
thereby providing a chemical handle for detection of
substrate proteins by immunoblotting and immunopre-
cipitation (77, 78). Solid-phase capture methods have
also been reported recently; in these methods the thio-
phosphorylated peptides from AS-kinase substrates are
covalently captured and subsequently eluted for identi-
fication by HPLC–MS/MS (79, 80). In each case dozens
of substrates of cyclin-dependent kinases were identi-
fied in yeast and human cells; recent work in our lab has
extended the approach developed by the Shokat group
to identify over 100 substrates of ERK2 (manuscript in
preparation). A remarkable result from these AS-kinase
based substrate identification experiments is that only a
small fraction (�10–20%) of the substrates have been
previously reported. Given that dozens of substrates
have been already been identified for many of these
kinases by other methods, including classical biochem-
istry experiments, the AS-kinase results can be extrapo-
lated to suggest that each of these kinases may have
hundreds of substrates. In fact, compared to systems-
level phosphoproteomic profiling experiments, the AS-
kinase experiments interrogate a much smaller part of
the signaling network but reveal a similar level of com-
plexity. These experiments suggest that signaling net-
works are much more highly connected than had been
previously recognized and that a tremendous amount of
mechanistic detail remains to be discovered at the
level of direct interactions among signaling molecules,
regulators and effector proteins.

Although chemical genetics is a powerful, unbiased
strategy for discovering signaling network topology,
there are a number of challenges and caveats to be con-
sidered. First, ATP-analogues are not readily taken up
by cells, and therefore labeling of kinase substrates typi-
cally occurs in cell lysates, either from cells expressing
the AS-kinase or by exogenous addition of AS-kinase to
the lysate. Since the reaction occurs outside the nor-
mal cellular environment, loss of biological context, in-
cluding subcellular localization, can lead to spurious in-
teractions, while the dilution of scaffold and substrate
molecules may cause some substrates to be missed.
Second, bio-orthogonal ATP analogues are not perfectly
specific for the AS-kinase, leading to background sub-

strate labeling due to endogenous wild-type kinases in
the cell lysate. Depending on the cellular context and the
expression and activity level of the AS-kinase, the level
of nonspecific labeling can make a substantial contribu-
tion to total labeling, significantly altering the results of
the assay. It is important to include an appropriate nega-
tive control (e.g., replacement of the AS-kinase with an
equivalent amount of wild-type kinase). Third, many
substrates are present at very low levels, such that iden-
tification is limited by the sensitivity of even the latest
generation of mass spectrometers. Further improve-
ments in the protocol for substrate enrichment com-
bined with more sensitive instrumentation will greatly
expand the range of applications for AS-kinases.

Clinical Relevance of Chemical Phosphoproteomics.
An increasing number of therapeutics target dysregu-
lated kinase signaling, especially in cancer. Imatinib
(Gleevec), developed to target BCR-ABL for treatment of
CML, is the most successful clinical example of a tar-
geted kinase inhibitor. Treatment with imatinib leads to
almost complete remission in most susceptible cases of
CML, although acquired resistance and recurrence re-
main problematic (81). Targeted inhibitors for other
kinases including EGFR, other RTKs, Src, B-Raf, PI3K,
MEK, and Akt are a major area of pharmaceutical devel-
opment (7). Unfortunately these therapeutics have, for
the most part, had a limited impact on disease progres-
sion and overall patient survival in the clinic. Even tu-
mors that respond to initial treatment often develop re-
sistance within a few months, either by acquiring a
mutation in the drug target or by activating compensa-
tory pathways (50, 82–84). One striking example comes
from glioblastoma, where increased expression and/or
mutation of EGFR occurs in approximately 50% of cases.
However, treatment with EGFR inhibitors has shown
only modest improvement in progression-free survival
(85), perhaps due to activation of alternate pathways,
including PTEN/AKT/mTOR (86, 87). Combining EGFR in-
hibitors with mTOR pathway inhibitors has shown im-
proved response in in vitro and preclinical models, but
this has not translated to human tumors for several rea-
sons, including negative feedback regulation in which
inhibition of mTOR can actually increase signaling
through AKT (88). Targeted therapeutics have encoun-
tered the same challenges in melanoma, non-small cell
lung cancer, and pancreatic cancer, among others (89,
90). It is clear that a systems-level understanding of the
complex regulatory circuits governing signaling re-
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sponses to therapeutic inhibition is required to over-
come these adaptive mechanisms.

Future Directions. Through chemical proteomics and
chemical genetics, it is now possible to dissect signal-
ing networks, identifying substrates for selected kinases
and targets for small molecule kinase inhibitors. Re-
sults from these experiments have shown that signal-
ing processes are highly interconnected and are subject
to feedback and regulation through interrelated tempo-
ral, spatial, and biochemical mechanisms.

Connecting this information with phenotypic and
clinical responses remains an extraordinary chal-
lenge, one that has proven far more difficult than orig-
inally hoped. Since phosphoproteomic experiments
have already demonstrated impressive breadth and

depth of coverage, simply increasing the number of
sites identified through developments in instrumenta-
tion and enrichment protocols is not likely to yield use-
ful biological insights. Instead, more sophisticated
strategies, both experimental and computational, to
elucidate signaling mechanisms and define complex
responses to targeted perturbations, are likely to be
more fruitful. Specifically, experiments that provide
high quality, quantitative temporal signaling data
across multiple conditions will be especially useful
for generating hypotheses and testing specific mecha-
nisms. Quantitative and mechanistic understanding
will eventually allow development of co-treatment
strategies and clinical interventions targeting redun-
dant or compensatory signaling nodes.
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